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FOREWORD 

T h i s   d o c u m e n t   c o m p r i s e s   t h e   t e c h n i c a l   s u m m a r y   r e p o r t   c o v e r i n g   t h e   i n -  

ves t iga t ions   ca r r i ed   ou t   by   t he   Ray theon   Company   unde r   t he   p rov i s ions  of Con- 

t r a c t  No. NAS 8-5225 and   Modif ica t ion  No. 1 t h e r e t o   d u r i n g   t h e   p e r i o d  of F e b -  

r u a r y  11, 1 9 6 3   t h r o u g h   F e b r u a r y  2 8 ,  1965.   These   inves t iga t ions   inc luded   the  

computa t ion  of o p t i m u m   e a r t h   r e - e n t r y   c o r r i d o r s   f o r   s i t u a t i o n s  as defined  by 

t h e   c u s t o m e r   a n d   d e s c r i b e d   i n  Part I of the   document   and   the   ex tens ions  of 

c a p a b i l i t i e s  of c o m p u t e r   p r o g , r a m s   r e q u i r e d   f o r   t h e s e   c o m p u t a t i o n s  as r e p o r t -  

e d   i n   P a r t  11. T h i s   w o r k   w a s   a c c o m p l i s h e d   u n d e r   t h e   t e c h n i c a l   s u p e r v i s i o n  

of p e r s o n n e l   i n   t h e   A e r o - A s t r o d y n a m i c s   L a b o r a t o r y ,   M a r s h a l l   S p a c e  

F l i g h t   C e n t e r .  

v i i  



SYNOPSIS 

OPTIMUM  EARTH  RE-ENTRY CORRIDORS 

I. Introduction 
The  maximum  capability of an  aero-space  vehicle  can  be 

d.etermined  quickly  and  accurately  using  the  steepest-ascent  optimization 

procedure  developed at the  Raytheon  Company.  The  performance of a 

specific  re-entry  vehicle  was  calculated  using  a  high-speed  digital 
computer.  This  study  comprises  the first part  of this  report. 

In  the  course of this  work,  the  only  method  then  available 

for  constraining  maximum  altitude  was found ineffective  for  use  in  escape 

speed  re-entry  problems  subject  to  exo-atmospheric  altitude  ceilings. 

Recent  extensions  to  the  theory of the  steepest-ascent  technique  provides 

a new method  which  can  be  used  to  give  direct  control  over  the  skip-out 

segment of a  re-entry  trajectory.  The  second  part of this  report   describes 
the  application of this  direct  method  to  satisfy  the  copstraint of an  exo- 

atmospheric  altitude  upper  bound  on  an  optimal  re-entry  path. 

2. Steepest-Ascent  Optimization  Procedure 

The  steepest-ascent  optimization  procedure  provides  the 

mathematical  formulation  for  the  digital  computer  program  used  here  to 
find  the  re-entry  capability of a  given  vehicle.  This  procedure  generates 
a  sequence of improved  control  histories,  culminating  in  one which extrem- 

alizes  a  prescribed  terminal  quantity  called  the  pay-off,  while  satisfying  a 

specified  set of terminal  and  in-flight  constraints. A typical  problem 
might  be  to  find  the  maximum or  minimum  range  for a given  vehicle  with 

prescribed  l imits on  the  total  heat  generated  and  on  the  magnitude of the 

control  functions. 

The  mathematical  model  which  describes  the  vehicle  and 

the  forces  acting upon it  determines  the  non-linear  differential  equations 
of motion.  These  equations  can  be as complicated  as  necessary  to  describe 

the  system  realistically so long as  the  functions  are  differentiable. No 

simplifying  assumptions  need  be  made  to  facilitate  the  solution of the 

system  equations  because  they  are  integrated  numerically.  The  terminal 
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constraints  can  be  in  the  form of equations,  e. g. , final  speed  must  equal 

Mach 2, or   in   the  form of inequalities,  e. g. , final  altitude  must  lie  between 

0 and 20 km. In addition  to  the  equations of motion  which  provide  in-flight 

equality  constraints,  there  may  be  in-flight  inequality  constraints  such as., 

aerodynamic  acceleration  must  not  exceed 10 g's  anywhere  on  the  trajectory. 

The  theoretical  basis  for  the  steepest-ascent  procedure is 
the  computing of influence  functions  for  the pay-off  and constraint  quantities. 

These  functions  are  special  solutions  to  the  differential  equations  adjoint 

to  the  equations of motion and  they  provide  information on how changes  in 

the  state  along  the  trajectory  affect  the  terminal  quantities.  Such  changes 

a r e  then  related  to  changes  in  the  control  histories.  We'then  have  the 

information  needed  to  alter  an  arbitrary  control  history  in  the  most  efficient 

way, i. e. so that  maximum  possible  increase  in  pay-off  results  for  requested 

changes  in  prescribed  terminal  quantities  and  for a specified  value of the 

square of the  perturbations  in  the  control  histories.  This  procedure is 

based  on  linearized  perturbation  theory and  the  degree of non-linearity of the 

system  limits  the  amount of valid  change  that  can  be  made  at  one  time. 

For   this   reason,   i t  is necessary  to  generate a sequence of trajectories.,  bat 

each is better  than  the  previous one.  The process is terminated  when  the 

amount of improvement  becomes  negligible. 

This  optimization  procedure  yields  not  only  the  vehicle's 

performance  limits  but,  in  addition,  a  sequence of successively  improved 

trajectories  together  with  their  control  histories.  This  pattern of infor- 

mation  can  be  valuable  in  establishing  appropriate  guidance  schemes. 

3. Re-Entry  Corridor  for  Manned  Lifting  Vehicle 

The first   task  assigned  in  this  study  was  to  determine 

extreme  re-entry  conditions  for  a  piloted,unpowered  vehicle.  This  task 

required  finding  the  optimal  use of aerodynamic  forces  during  the  re-entry 

phase of an  aero-space  mission.  The  system  included  the  constraints  that 

the  pilot  not  be  exposed  to  excessive  aerodynamic  loads  and  that  the  vehicle 

remain  below a pre-assigned  altitude.  For a se t  of re-entry  speeds  ranging 

from  sub-orbital  to  escape,  the  extreme  re-entry  flight-path  angles  were 

computed  as  well  as  the  extreme  re-entry  positions  which  permit  arrival 

at  a  specified  target.  These  extreme  positions  were  located by  finding  the 
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maximum  and  minimum  ranges of the  vehicle.  Thus  we  know,  for  a  given 

re-entry  velocity  vector,  the  location of the  complete  set of re-entry 
initial  positions  which  ensure  the  ability  to  arrive at the  target. 

The presence of a pilot  .in  the  vehicle  precludes  high 
aerodynamic  loads.  Experiments  have  shown  that  a  pilot's  ability  to  remain 

usefully  conscious is a function of the  intensities of the  aerodynamic  forces 
and  their  durations,  the  pilot's  attitude  with  respect  to  the  acceleration 

vector,  and  other  factors.  The  pilot  penalty  function,  based on  an empirical  

relation  derived  from  these  data,  provides a measure  of the  "acceleration 

dose"  the  pilot  has  taken  for  the  entire  flight. A numerical  value of one 

represents a f u l l  dose  and  when  incorporated as a terminal  constraint  
serves  to  achieve  the  desired  constraint on aerodynamic  load. 

The original  steepest-ascent  theory was not  designed  to 

handle  directly  the  satisfaction of in-flight  inequality  constraints.  The 
method  used  for  controlling  maximum  altitude  was  the  inclusion of an 

altitude  penalty  function  in  the  system  equations. A simple way  to  do  this is 

to  compute  the  area,  in  the  altitude  vs.  time  graph,  which  lies  above  the 

prescribed  maximum  altitude  for  each  non-optimal  trajectory.  This  area 

becomes a terminal  quantity  with  desired  value  zero.  The  control  program 

is altered  to  make  this  violation  vanish by the  time  the  optimal  trajectory 
is found  Thus  no  part of the  optimal  trajectory  is  found  above  the  altitude 

ceiling.  This  method  proved  satisfactory  in  previous  studi.es  where  the 

altitude  ceiling  was  well  within  the  sensible  atmosphere.  The  altitude 

ceiling  specified  in  this  problem  was  well  outside  the  edge of the  atmosphere, 

i. e. , the  vehicle  could  not  be  controlled  using  aerodynamic  forces  in  the 
vicinity of the  altitude  upper bound.  The altitude  penalty  function was not 

found to  be  useful  for  satisfying  exo-atmospheric  altitude  ceilings  in  maxi- 

mum  range  problems  for  vehicles  entering  the  atmosphere  with  escape 

speeds.  The  skip  altitude is extremely  sensitive  to  small  changes  in  the 

dynamic  state of the  vehicle  as  it   leaves the. atmosphere. A direct  method 
for controlling  maximum  altitude  was  needed. 

4. Exo-Atmospheric  Altitude  Ceilings  on  Re-Entry  Trajectories 

Recent  theoretical  advances  at  Raytheon  have  extended  the 
steepest-ascent  technique  to  include  the  direct  handling of in-flight  inequality 
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constraints  on  quantities  containing  the  control  functions, e. g. , aerodynamic 
acceleration, as well as on  functions of the  state  variables  only,  e. g. 

altitude.  The  necessary  changes - in  the  adjoint  equations  and  discontinu- 
ities  in  the  influence  functions  were  derived so that  optimal  trajectories 

with  segments  on  the  constraint  boundary would satisfy  the  necessary 

conditions  for  an  extremum.  The  determination of optimal  switching 

times  was  critical.  This  method  was  compared  with  the  altitude  penalty 

function  method  for  satisfying  an  altitude  ceiling  which is well  inside  the 

sensible  atmosphere.  The  rate of improvement  for  the  direct  method was 

much  greater  than  for  the  penalty  function  method.  This  result i s  under- 

standable  because  the  direct  method  uses  none of the  limited  amount of 

control  perturbations  while on  the  constraint  boundary,  and so concentrates 

all  changes  on  the  improvable  part of the  trajectory.  Thus,  the  direct 

method is the  efficient  way  to  employ  steepest-ascent. 

This new  method  introduced  the  idea of an  intermediate 

point  constraint,  which  is  treated  in  the  same way as  a  terminal  constraint 

except  that its influence  function is calculated  only  during  the  interval 

from  the  initial  time  until  the  associated  intermediate  time.  The  control 
program  is   al tered  during  this  interval 'in such a way that  the pay-off 

quantity,  the  terminal  constraints, and the  intermediate  point  constraint 

are  all  improved.  After  the  intermediate  time is passed  in  the  integration, 

this  constraint  does not  influence  the  changes  made  in  the  remainder of 

the  control  program.  For  an  exo-atmospheric  altitude  ceiling,  the  method 

of incorporating  an  intermediate  point  constraint  which  prescribes  explicitly 

that  the  maximum  altitude  not  exceed  the  altitude  ceiling  offers  a  direct 

means of satisfying  the  altitude  constraint. 

F o r  a spherical  earth,  the  direct  method is even  more 

attractive. An analytic  expression  exists  which  relates  the  maximum  skip 

altitude  to  the  dynamic  state  at  the  edge of the  sensible  atmosphere.  Thus, 

an  intermediate  point  inequality  constraint  c'an  be  placed on the  dynamic  state 

with  which  the  vehicle  leaves  the  atmosphere.  Satisfaction of this  condition 

ensures  acceptable  maximum  altitude. '"he control   programs  are   a l tered 

from  the  t ime of initial  penetration of the  atmosphere  until  the  time of 

leaving  the  atmosphere  subject  to  this  intermediate  point  constraint. In 
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this  way,  the  direct  control  provided by  the  use of an  intermediate  point 

constraint is tr iggered  just  as soon  as  the  maximum  skip  altitude is known, 

which is at the  edge of the  atmosphere. An added  bonus,  which  results 
from  this  method,. is the  elimination of the  need of numerical  integration 

over  the  Keplerian  ellipse  portion of the  trajectory.  The  analytic  solutions 

are  derivable  for  the  trajectory  i tself  and for  all  the  influence  functions. 

The  substitution of analytic  solutions  for  numerical  integration  represents 

a considerable  saving  in  computer  time  especially i f  the  exo-atmospheric 
portion of the  trajectory is large  and/or  the  number of terminal  constraints 

many. 

5. S ummary 
The  steepest-ascent  optimization  procedure is a  powerful 

tool  for  determining  the  capability of re-entry  vehicles.  The  first  part 

of this  study is a numerical  evaluation of the  performance of a  given  re- 

entry  vehicle.  The  second  part is an  extension of the  steepest-ascent 
procedure  to  include  the  direct  control of maximum  exo-atmospheric 

altitudes.  The  need  for  this  extension  was  revealed when  the  use of an 

altitude  penalty  function  as  an  indirect  means of satisfying  an  exo-atmos- 

pheric  altitude  ceiling  proved  ineffective. 
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PART I 

EARTH-RE-ENTRY  CORRIDORS 

FOR 
MANNED LIFTING  VEHICLE 

" " 



1. SUMMARY 

A study  has  been  made  to  determine  the  extreme  re-entry  flight- 

path  angles,  for  various  re-entry  speeds,  which  permit  safe,  unpowered 

descent  for a given  manned  lifting  vehicle. In addition,  circular  arcs, 

called  entry  arcs,  were  located  at  the  initial  altitude of 120 km such  that, 

€or a specified  initial  velocity  vector,  entry at any  point  within  the  assoc- 
iated  arc  ensures  the  abil i ty to arrive  at  the  designated  target  on  the sur- 

face of the  earth. 
The  descent of the  vehicle is controlled  by  varying  the  aero-dynamic 

forces  through  the  angle of attack  history.  The  presence of a pilot  in  the 

vehicle  precludes  excessive  aerodynamic  loads. A pilot  tolerance  function, 

which i s  a measure  of a pilot’s  ability  to  remain  usefully  conscious  and is a 

function of both  the  intensity  and  duration of the  aerodynamic  acceleration 

is  included  as a constraint  in  the  system  equations.  This  condition  deter- 

mined  the  steepness of the  entry  flight-path  angle. 
The  re-entry  speeds  range  from  sub-orbital  to  escape  speeds. A 

vehicle  entering  the  atmosphere at parabolic  speed  and  shallow  flight-path 

angle  may  skip  out of the  atmosphere. In order  to  exclude  trajectories  with 

extremely high  skip  altitudes,  an  altitude  ceiling of  150 km.was  imposed 

upon  the  trajectory.  This  condition  served  to  limit  the  shallowness of the 

entry  flight-path  angle. 
The  endpoints of the  entry  arcs,  which determine  the  locus of all 

possible  initial  points of trajectories  satisfying  the  constraints  and  termin- 

ating  on  the  target,  were  found by computing  the  range  capability of the 

vehicle.  By  placing  the  terminal  points of the  maximum  and  minimum 
range  trajectories  at   the  target,   the  init ial   points of these  trajectories 

then  locate  the  endpoints of the  entry  arcs.   There is an   a rc   assoc ia ted  

with  each  re-entry  velocity  vector.  Thus, if the  given  vehicle,  having 

the  specified  entry  velocity,  penetrates  the  atmosphere  outside this a rc ,  

the  pilot wil l  not  be  able  to  reach  the  target  satisfying  the  pilot  and  altitude 
constraints,  The  extreme  trajectories  were  determined  using  the  steepest- 

ascent  optimization  technique  with JBM 7090 and 7094 high  speed  computers. 

This  method  generates a sequence of improved  control  programs  culmina- 
ting  in  the  required  extrema1  trajectory. 

1-1 
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The  vehicle is considered a mass particle of weight  8500 lbs, 

which  moves  with  respect  to a spherical,  non-rotating  earth  under  the 

action of the  inverse  square  gravitational  field, its l i f t  and its drag. 

The l i f t  and  drag  coefficients are functions of the  angle of attack  and 

maximum l i f t  to  drag  ratio is 0.82.  The  reference area is 12.97  square 

meters .  ARDC Model  Atmosphere 1956 provided  the  variation of air 

density  with  altitude.  The  entry  point is 120 km. above  the  surface of 

the  earth  and no point of the  optimal  trajectories  has  altitude  exceeding 

150 km. nor is the  pilot  subjected  to  an  excessive  "acceleration  dose. I '  

The  results of the  study  show  that  for  entry  speeds as low as 750 

m./sec. , t he re   a r e  no restrictions  on  entry  flight-path  angle  and  the 

vehicle  must  enter  the  atmosphere  within  one  degree of the  target if  

the  re-entry  velocity is horizontal.  Thus,  the maximum maneuverabil- 

ity is negligible. When the  entry  speed is increased  to 3500 m. /sec.  , 
consideration  for  the  pilot limits the  entry  flight-path  angle  to 110' 

measured  f rom  the  local   ver t ical .   For   this   s teepest   entry  angle ,   the  

vehicle  must  penetrate  the  atmosphere  between 2. 3' and 3.1' from  the 

target .   For   horizontal   entry,   the   entry  arc   ranges  f rom 4.8'to 7.  3' 

measured  from  the  target.  When the  entry  speed is circular,   here 

taken as 7833 m. /sec.  , the  vehicle  can  be  kept  within  the  atmosphere 

for  any  entry  angle  larger  than 90'1 F o r  a typical  shallow  entry of 90. 5; 
the  vehicle  requires at least  46'0f range  for its descent  and  cannot  be 

kept  in  the air for   more  than 138'. The  steepest  allowable  entry  angle 

is 101.  75' and  then  the  entry  arc  shrinks  to 8' with  the  closer  endpoint 

a m e r e  8' from  the  target. 

The  system  becomes  very  sensitive  when  the  re-entry  takes 

place at parabolic  speeds,  i.e. 11080 m. /sec.  To  satisfy  the  pilot 

and  altitude  constraints,  the  entry  flight-path  angle  must fall within 

the  narrow  range of 94. 71'to  99.8O and  for  these  entry  angles,  the 

closer  endpoint of the   en t ry   a rcs   a re  22' and 15' away  from  the  target 

respectively.  The  farther  endpoint,  determined  by  the maximum range 

trajectories,  were  difficult  to  locate.  They are at least as far as 160' 

and 110" away  from  the  target  for  the  shallowest  and  steepest  entries 

respectively.  The  altitude  constraint of 150 km. proved  difficult  to 

satisfy.  The  criterion  to  maximize  range  alters  the  control  program 
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in  the  direction  to  produce  skip-out. An altitude  penalty  function  was 

used  to  control  this  tendancy but slight  changes  in  the  consecutive 
control  programs  resulted  in  al ternate  satisfaction  and  violation of the 

exo-atmospheric  altitude  ceiling.  Another  approach  was  needed. 

P a r t  I1 of this  study  discusses  the  proposed  solution to this  problem : 

the  intermediate  point  constraint  method of controlling'  exo-atmospheric 

skips by constraining  that  specific  function of the  dynamic  state of the 

vehicle  at  the  edge of the  atmosphere,  which  determines  maximum  skip 

altitude. 



'I I 

2.  INTRODUCTION 

This  study is pa r t  of the  general  abort  re-entry  problem.  The 

trajectory of a space  vehicle  begins  with a boost  phase  which  transports 

the  vehicle  through  the  atmosphere  and  into  space  where  it  enters a powered 

and/or  cruise  phase  through  space.  Somewhere  along  the  trajectory, a de- 

cision  to  abort  may  be  necessary.  The  point of no return,  i. e. ,   the  last   t ime 

a successful  abort  may  be  initiated,  depends  on  the  ability of the  vehicle  to 

turn  around  and  re-enter  the  atmosphere  with a velocity  which  ensures a safe 

descent  to a specified  landing  site  on  the  surface of the  earth.  The  constraints 

on  .the  unpowered  atmospheric  portion of the  return  trajectory  determine  the 

bounds on the  speed  and  flight-path  angle  at  the  entry  point as well as i t s   l o -  

cation  with  respect  to  the  landing  point.  These  bounds  on  the  initial  conditions 

of the  atmospheric  phase of the  trajectory  become  bounds  on  the  terminal 

conditions of the  exo-atmospheric  part of the  return  trajectory.   These  re- 

strictions  together  with  the  engine  capability of the  vehicle  determine  the  limits 

on  the  dynamic  state  for  the  initiation of a successful  abort.  The  bounds, 

which  define  the  vehicle's  capability,  must  be  found  before a manned  space 

mission  can  be  planned. 

This  report  is concerned  with  finding  the  bounds on the  dynamic  state 

at  the  edge of the  atmosphere  which  ensure a safe  unpowered  descent  to a spe- 

cified  target  near  the  surface of the  earth.  These  bounds  depend  on  the  amount 

of control  available  to  the  pilot  through  the  lift  and  drag  characteristics of the 

vehicle.  They  are  also  influenced by the  l imits on  aerodynamic  load  imposed 

upon  the  system  for  the  safety of the  pilot  and  on  the  exo-atmospheric  altitude 

ceiling  which  serves  to  exclude  trajectories  with  excessive  skip  altitudes.  The 

initial  altitude is specified  near  the  boundary of the  sensible  atmosphere.  Under 

these  conditions,  the  bounds  on  the  initial  flight-path  angle  for  specified  initial 

speeds  was  sought.  At  high  entry  speeds,  the  steepness of the  entry  angle is 

limited by consideration  for  the  pilot  and  the  shallowness by the  skip  out  ceiling. 

In addition,  the  locus of regions  at  the  edge of the  atmosphere  was  sought  for 

each  extreme  entry  velocity  vector  such  that  entry of the  atmosphere  at a 
point  within  the  region  with  the  specified  velocity  guarantees  the  ability  to 

arrive  at   the  target.   These  regions serve as terminal  target  areas  for  the 

preceding  exo-atmospheric  portion of the  flight  and  are  thus.interfaces for the 

complete  aerospace  problem.  The  information  obtained  here  for  finding  entry 

regions  with  respect  to a specified  target  can be used  for  the  converse  problem 

of locating  targets  or  landing  sites  for a specified  entry  position. 



3. LIST OF SYMBOLS 

A 

cD 

cL 

D 

G 

L 

P 

R 

S 

T 

V 

vO 

a 

g 

g0 
h 

h l  

m 

t 

U 

a 

b a  

e 

A. 

altitude  penalty  function 

drag  coefficient 

lift  coefficient 

drag 

vector of the  partial  derivatives of state  variable 
rates  with  respect  to  control  function 

lift 

pilot  penalty  function 

earth  radius 

re ference   a rea  

final  time 

vehicle  speed 

initial  (re-entry)  vehicle  speed 

aerodynamic  acceleration 

gravitational  acceleration 

g at   surface of the  earth 

altitude 

reference  altitude 

vehicle  mass 

time 

step  function 

control  variable,  angle of attack 

change  in  control  variable 

flight-path  angle 

initial  (re-entry)  flight-path  angle 

influence  function 
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LIST O F  SYMBOLS (Continued) 

P density of air 

T pilot  acceleration-endurance  time 

Q angular  displacement,  range 

4J terminal  constraint 
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4. PROBLEM DESCRIPTION 

4 .1  Dynamic  Model 

The  vehicle is  considered  to be a par.ticle of constant mass 

which  moves  in a plane  with  respect  to a spherical,  non-rotating  earth. It is 

subject  to  the  action of three  forces:  the  inverse-square  gravitational  field 
of the  ear th ,   i t s   l i f t ,   and  i ts   drag.   The  descent  of the  vehicle is controlled 

by varying  the  lift  and  drag  forces.  The  variation of air density  with  respect 

to  altitude is included.  The  force  diagram i s  shown in  Figure 1. 

FORCE DIAGRAM 

SURFP" 
EARTH'S 

_. 

k 0 
FIGURE I 



The  weight  of-the  vehicle  is 8500 pounds  and  its 

reference  area  is  12.97  square  meters.  The  aerodynamic  coefficients 

are  functions of the  control  variable, , as  shown  in  Figure 2. The 

maximum  lift-to-drag  ratio  is  0.82  which  occurs  at a = 50°. During 

this  study,  the  angle of attack  was  constrained to  the  interval of -70' 

to 70' because  this  interval  includes  the  extreme  variations  in  lift,  

drag,  and  lift-to-drag  ratio. 

LIFT AND DRAG COEFFICIENTS 
VS ANGLE  OF  ATTACK 

-9- -60 -40 -20 
a(DEG) 

-0.44 \ 

- 0.8 J 

FIGURE 2 
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Below  Mach 2 ,  the  aerodynamic  coefficients  are 

functions  not  only of angle of attack  but  also of Mach  number.  In  view of 

this  consideration, a speed of Mach 2 served  as  the  stopping  condition 

for the  computing.  This  speed  occurs  at  altitudes  compatible  with  the 

initiation of the  landing  phase. 

4 . 2  Equations of Motion 

m V  = - D - m g c o s e  

m V ( 8 + + )  = - L t m g s i n e  

(R t h) + = V sin 8 

h = V cos 8 

where 

and 

= go( R:h J 2 

p (h) is given by ARDC Model  Atmosphere 1956. 

cD (a) and  CL (a) a r e  shown  in  Figure 2 .  

go = 9.815 m. / s ec  . 2 

R = 6.  371 x 10 m. 6 

S = 12.97 m. 

m = 393 kg. sec 2 /m. 



4 . 3  Pilot  Acceleration-Endurance  Constraint 

F o r  a manned  re-entry,  control  programs  which  produce 

excessive  aerodynamic  accelerations  must  be  excluded.  This  condition is 

imposed  during  the  solution  procedure  in  the  following  way. A man's  ability 

to  remain  usefully  conscious is a function of both  the  aerodynamic  accelerations 

he  experiences  and  their  durations.  It  has'been  shown  that  he  can  tolerate  quite 

high  accelerations if they  are  sufficiently  brief.  The  dimensionless  aerodynamic 

acceleration, a ,  is  defined by 

\ h Z  t D2 
a =  

mgO 

Experimental  data  may  be  used  to  derive  the  endurance  limit t ( a )  of 

experienced  test  pilots  to  given  aerodynamic  accelerations.  The  pilot 

acceleration-endurance  function, Z (a), used  in  this  study  is  shown 

in  Figure 3 .  This  function  was  derived  principally  from  information 

in  References 1 - 3 .  The  more  recent  data  in  References 4 and 5 reveal 

that  the  function of Figure 3 is  conservative by factors  from 2 to 5 ,  i n  

t e r m s  of permissible  t ime  for a given  acceleration, if  the  pilot  is  oriented 

in  the  most  favorable  attitude.  In  the  current  study,  however,  the 

attitude of the  vehicle is subject  to  wide  variations  in  some  maneuvers. 

If the  pilot i s  exposed  to  similar  variations  in  attitude,  he  may 

experience  situations  where,  according  to  Reference 5,  his  endurance 

is  significantly  less  than  that  shown  in  Figure 3 .  It  is  believed,  however, 

that  the  T(a)  relation  employed  in  the  current  study  represents a reason- 

able  compromise  for  the  specification of pilot  endurance  to  acceleration. 

A s  a refinement  in  the  future,  acceleration  endurance  might  be  intro- 

duced a s  a function of both  aerodynamic  acceleration  and  pilot  attitude. 
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PILOT  ACCELERATION  ENDURANCE  LIMIT 

14,1 

PILOT ENDURANCE 
LIMIT, r (SEC) 

I20 - 
NOTE: 

FOR Osar5 CURVE 
IS BASED  ON 
r (4) = 1000 
~ ( 3 1 9  5000 . 
r ( O s a < 3 ) = a  

100 - 
BO - 
60 - 

40 - 
20 - 
0 1 I I I I I 
0 4 8 12 16 20 24 

ACCELERATION, a(gdd 

FIGURE 3 

B y  adding  the  equation : 

1 

T (a) 
p = -  

to  the  equations of motion,  the  "acceleration  dose"  or  terminal  value of the 

"pilot  penalty  function'' i s  given  by 

where T is the  time of flight. When this  quantity  becomes  1,  the  pilot is 

assumed to have  had a full  dose of acceleration;  therefore,  he  should not  be 

exposed  to  further  accelerations  which  would  increase  this  dose, if  he is to  

function  usefully. Thus, a terminal  constraint is 9 i 1. 
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4.4 Altitude  Ceiling 

One of the  constraints  on  the  problem is  that no point of the 
optimal  trajectory  shall  have  altitude  exceeding 150 km.  For  this  vehicle 

and  the  range of entry  speeds  considered, this altitude is considerably  beyond 

the  "edge" of the  sensible  atmosphere.  The  aerodynamic  control is negligible 

in  this  region.  The  vehicle  cannot  control  its  motion  during  its  skip  phase. 

The control  program  must be adjusted  before  the  vehicle  leaves  the  atmosphere 

so that  its  maximum  skip  altitude  does  not  exceed  150  km. 

A standard  way of satisfying  this  condition is to  add  to 

the  equations of motion,  an  altitude  penalty  function.  There  are  many  ways 

to  define  such a function. A useful one is: 

where  the u is a step  function  defined as: 

u (r)  = 0 for  r < 0 

u (r)  = 1 for r 2 0 

is a measure of the  portion of the  trajectory  above a reference  alt i tude  hl .  

If the  squared  term  were  raised  to  the  f irst   power  and  hl   set   equal  to 150 km,  

A would  be  proportional  to  the  area,  in  the  altitude  versus  time  graph,  which 

l ies  above the  maximum  prescribed  altitude  and  thus  could be considered  the 

amount of altitude  ceiling  violation  over  the  entire  trajectory.  The  excess 

altitude i s  squared  in  order  to  penalize  gross  altitude  ceiling  violations  more 

heavily  than  small  ones  and  hl  may  sometimes be set  to a number  smaller 

than  the  altitude  ceiling.  The  altitude  constraint is  satisfied when A i s  zero. 

Thus A can be used a s  a terminal  constraint  in  the  steepest-ascent  procedure. 
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4 . 5  Optimization  Problem 

The  problem  to be solved  was two-fold. The  f irst   was  to find  the 

limits  on  the  re-entry  flight-path  angle  for  each of four  re-entry  speeds. 

These  l imits   are   imposed upon  the  entry  angle  by  the  requirement  that  the 
terminal  value of the  pilot  penalty  function  not  exceed 1 and  the  terminal 

value of the  altitude  penalty  function  be  zero.  The  steepness of the  entry 

angle  was  determined by  the  pilot  constraint.  The  entry  angle  was  increased 

in  discrete  steps  and  for  each, a pilot  penalty  minimization  problem  solved. 

The  upper bound was  established as  the  largest  entry  angle  for  which a 

successful  minimization  yielded  an  "acceleration  dose"  less  than  or  equal  to 

1 .  The  lower  bound,  or  shallowest  entry  angle  was  determined  by  the  altitude 

ceiling.  It  was  found  by  using  the  control  which  produced  maximum  negative 
lift.  The  minimum  entry  angle is the  smallest  one  which  satisfies  the  alti- 

tude  ceiling  when  the  control  is  set  for  maximum  negative  lift. 
The  second  problem  was to  find  the  locus of all points  at  the  initial 

altitude  such  that  arrival of the  vehicle  at  one of these  points  with  the  speci- 
fied  velocity  vector  ensures  the  ability  to  reach a given  target.  Thus, 

a r r iva l  of the  vehicle  outisde  this  "entry  arc"  with  the  specified  velocity  will 

result  in  overshooting  or  undershooting  the  target.  The  minimum  range 
needed by the  vehicle  to  traverse  the  atmosphere  determines  the  overshoot 

boundary,  while  its  maximum  range  sets  the  undershoot  boundary.  The  end- 

points of the  entry  arcs  are  thus  located by finding  the  range  capability of the 

vehicle  for  the  shallowest  and  steepest  entry  angle  for  each  entry  speed. 

Since  there  are  four  entry  speeds : 750 m./sec. ,  3500 m./sec. ,  7833 m./sec.  

and  11,080  m./sec.  this  requires  finding  eight  entry  arcs  and  thus a total of 

16 optimization  problems  were  solved. 

The  method  used  to  locate  entry  arcs is shown in  Figures  4 and 5. 

F o r  a given  re-entry  velocity  vector, i. e.  specified  initial  speed  and  initial 

flight-path  angle,  the  maximum  and  minimum  ranges  are  computed  subject 

to a l imit  of 1 on  the  "acceleration  dose"  given  the  pilot  and  an  altitude  ceil- 
ing of 150 km.  The  initial  altitude is 120 km.  and  the  stopping  condition  or 

final  time  is  determined  when  the  speed  reaches  Mach 2 .  Figure 4 shows 
typical  maximum  and  minimum  range  trajectories,  starting  from  the  same 

init ial   point.   The  same  trajectories  are shown in  Figure 5,  displaced so 

that  they  go  through  the  same  terminal  point.  Thus,  their  initial  points  be- 
come  the  end  points of the  entry  arc .  If the  initial  altitude of the  vehicle 

is   anywhere  on  the  arc El Ez and  the  vehicle  has  the  specified  initial  velocity, 
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then arrival at the  target  can  be  achieved. If the  initial  altitude is  outside 

the  entry  arc,  then  the  vehicle  will  undershoot  or  overshoot  the  target. 

Vehicle  Range  Capability 

A = Minimum  Range 
Trajectory 

B = Maximum  Range 
Trajectory 

Initial  Velocity  Vector 
Specified 

Figure 4. 

Entry   Arcs  

A = Minimum  Range 
Trajectory 

B = Maximum  Range 
Trajectory 

T = Target  Location 

A r c  E l  E2 is Entry  Arc  for  Specified  Initial  Velocity  Vector. 

Figure 5. 
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5. PROCEDURE  FOR  TRAJECTORY  OPTIMIZATION 
"" 

The  differential  equations of motion  together  with  the  pilot  and 

altitude  penalty  functions  form  the  non-linear  system  equations  which 

describe  the  problem.  They  are: 

2 

CL (a) p (h) V S t - g0 R e = - -  ( =) sin e - V sin 8 
2 m  V R t h  

9 =  
V sin 0 

R t h  

h = V c o s  8 

This  system of differential  equations  could be solved  numerically 
if the  initial  conditions  were  specified  and i f  the  control  program a (t)  were 

known. The  steepest-ascent  optimization  procedure  generates a sequence of 

successively  improved  control  histories  which,culminate  in  the  optimal  control 
program. An optimal  control  program i s  one  which  extremalizes a specified 

terminal  quantity. 

The  process  starts  with  an  arbitrary  control  function a (t).  It is 
0 

arbitrary  in  the  mathematical   sense but in  practice  requires  that  engineering 
experience  with  the  given  mission  pr0vid.e a nominal  control  program  which 

keeps  the  result ing  trajectory  in  the  r ight  region.  From  specified  init ial  
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conditions,  the  system  equations  are  integrated  numerically  using  the 

nomiilal  control  program  until  the  terminal  condition  which  determines 

final  time  is  reached. We then  have a re-entry  trajectory.  Let u s  assume 

range is  to  be  maximized  subject  to  the  terminal  conditions  the P < 1 and 

A = 0, i. e.  the  pilot i s  not  to  receive  more  than  one f u l l  dose of acceleration 

and  the  altitude  ceiling'is  to  be  satisfied.  Our  first  re-entry  trajectory  will 

not,  in  general,  maximize  the  range  nor  satisfy  the  limits  on P and A .  F o r  

this  reason,  the  control  program ff (t)   must now be  improved.  The  criter- 

ion  for  improvement  is  that  the  next  trajectory show maximum  increase  in 

range  for  requested  improvements  in P and A ,  hence  the  name  steepest- 

ascent.  The  theory  for  computing 6 0  (t)  which  when  added  to ff (t)  to  pro- 

duce a new control  program f f l  (t)  that  does  just  this  is  based  on  small 

perturbations  about  the  nominal  trajectory.  There  is  then a limit  on  the 

amount of change,  measured by the  expression 

0 

0 

which  can  be  made  and  therefore  on  the  requested  improvements  in  the 

terminal  conditions  and  the  expected  increase  in  the  range.  Thus,  the 

process  must be  repeated,  each  iteration  improving  the  control  program 

until no further  improvement  can  be  made.  The  final  control  program 

yidds  maximum  range  and  satisfies  the.pilot  and  altitude  constraints. 

The  derivation of the  expression  for 6 0  (t) i s  given  in  Ref. 6. 
The  scheme  for  computing 6 a ( t )  will  be  summarized  here  and  the  mathe- 

matical   justif ication  for  i t   is   given  in  Part  I1 of this  report. 

The  system  equations  are  integrated  from t using a given  set of 
0 

initial  conditions  and  the  nominal  control  program ff (t)  until  the  final  time 

T. A terminal  constraint  is  chosen  to be the  stopping  condition.  In  this 

problem  i t   is  V = Mach 2 .  This  condition is  always  satisfied.  The  condi- 

tions  which  are  not,  in  general,  satisfied  are @ (T) = maximum, P < 1 and 

A = 0. 

0 

We can  get  information  on how d @ (T$.  dP  and dA are  related  to 
6a  (t) by  finding  special  solutions  to  the  adjoint  differential  equations of 

the  given  system.  These  are: 
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1 80 2 
kv = - C D p V S A v  + [L C L P  s + "  - 

m 2 m  V [R:hl sin e 

2 a  d "- 
V d a  

- cos e X + (V sin e xh 
R + h  9 

i = o so X = constant + + 

1 go R V sin 8 3 - CL d p  v s  + - sin €I - 
d h   V R   [ R t h )  (R + h)2 ] 
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A = 0 so A = constant 
P P 

AA = 0 so AA = .constant 

This  l inear  set  of differential  equations is integrated  backward  from 
T to to, three  times  giving  the  three  influence  functions, A + . (t), ip (t), 

A* (t)  where  each  vector  has  the  six  components: X v  (t),  (t), A+ (t), 

XR (t), A (t)  and AA (t). The  "initial"  conditions  for  these  functions  are: 

- 
- 

P 

whe r 

A 9 (T) = 

c 

(-t  I 
0 

1 

0 

0 

0 J 

A (T) = P - 

e + , V , P , A a r e  evalua 

(" $ 1 
0 
0 
0 

1 
0 

( A )  
0 

0 
0 

0 
1 

.ted  at T. The two influence  functions  for 

the  terminal  constraints - Ap (t)  and - A* (t) a r e  combined  to  give  the 6 x 2 

matr ix  A+ (t). 

The  adjoint  equations  were  formed  using  partial  derivatives of all 

the  state  variable  rates  with  respect  to all the  state  variables. We a1s.o need 

partial  derivatives of all the  state  variables  with  respect  to  the  control  variable. 

This  is  given by the  vector G (t)  which i s  

G (t) = 

1 'D 
" p v2 s 

2 m   d ' a  

1 
" d C L .  p v s  

2 m  d a  
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We now have  the  information we need  to  compute  the  change  in 
the  control  program. It is: 

L 
0 

r T 

T 

d P  and d A are  the  requested  changes  in  the  pilot  and  altitude  constraints 

and  (d is the  requested  amount of change  in  the  control  program. If 

(d is   chosen not so large  that  the  linearity  assumptions  are  violated,  then 

the  next  re-entry  trajectory  produced by a1 (t) = a. (t) + 6 a (t) will  have  the 
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largest   possible  increase  in  range  for  this  amount of control  change  and  the 

pilot  and  altitude  penalty  functions  will  have  values P + d P and A + dA 

respectively.  The  entire  procedure is repeated  using a 1  (t)  in  place of ao(t). 

In  this  way, a sequence of control  programs  are  generated,   each  better  than 

the  previous  one.  The  procedure i s  terminated  when  the  amount of 

improvement  becomes  negligible. 
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6 .  RESULTS 

The  results  are  tabulated  in  Table 1. For a given  entry  velocity, 

the  angular  distance  between  the  target  and  the  re-entry  point  nearest  to  the 
target is indicated  in  the  Minimum  Range  column. If the  vehicle  enters  the 

atmosphere at this  distance  from  the  target,  the  descent  must  be  made  using 

the a program  associated  with  the  minimum-range  trajectory. An entry 

closer  to  the  target  will  cause  overshoot  because  the  steepness of the  trajectory 

is  limited by the  pilot  penalty  function.  Similarly,  the  numbers  in  the  Maximum 

Range  column  indicate  the  farthest  from  the  target  that  entry  may  occur.  The 

en t ry   a rc  is  the  circular  arc  at   the  specified  init ial   al t i tude of 120  km.  joining 
the  nearest  and  farthest  possible  re-entry  points.  Entry  at  any  point  within 
this  arc  with  the  associated  initial  speed  and  flight-path  angle  ensures  the 

ability to arrive  at  the  target.  The  entry  flight-path  angle,  which is  the 

direction of the  initial  velocity  vector  measured  counterclockwise  from  the 

local  vertical,  can  be  confined  to  lie  between YO0 and 180°. The  trajectory 

for  an  entry  flight-path  angle  lying  between 180°  and 270° is the  same as  for 

i ts   mirror   image  in   the 90 to 180° range. 0 

Table 1. Tabulation of Results 

Entry 
Speed 

(m. / s e c . )  

750 

3500 

7833 

11080 

Entry  Flight- Entry-Arc Maximum Minimum 
Path Angle 

(degrees)  (degrees)  (degrees) (degrees) 

Length Rang e Range 

I I I 
I + 

90 
180 

90 
110 

90. 50 
101.75 

94.71 
99. 8 

0. 93 

0. 8 3. 1 2. 3 
2. 5 7. 3 4. 8 

0. 10 *O. 05 0 
0. 12 1.  05 

46 

95 110  15 
138 

8 16 8 
92 138 

22 160, 
* 

* See  discussion  in  text. 
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The  re-entr.y  corridor,  as  it   appears  in  the  initial-flight-path- 

angle,  initial-speed  plane,  is  shown  graphically  in  Figure 6 .  

BOUNDS ON ENTRY FLIGHT-PATH 
ANGLE VS ENTRY SPEED 

ENTRY  ALTITUDE = 120 KM 
@COMPUTED POINTS 

INITIAL FLIGHT-PATH IO5 
ANGLE,B,(DEG) 

100 

EXCESSIVE 
ACCELERATION 

1 ACCEPTABLE 

0 2 4 6 8 1 0 1 2  
INITIAL SPEED, Vo (KM/SEC) 

FIGURE $j 
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For  the  lowest  entry  speed  studied, 750 m. /sec.  , there is no 

restriction on  the  initial  flight-path  angle.  The  vehicle  can  enter  the 
atmosphere  with a horizontal  velocity  or one which is straight down,  but 

the  range  and  entry-arc  length  are so small as to  be  negligible  when  com- 

pared  with  the  performance at higher  speeds. 

The  steepest  entry  angle  for  an  entry  speed of 3500 m. /sec.  is 

approximately  110 . At this entry  angle,  the  pilot  penalty  constraint  can  be 

held  to 1 for  maximum  and  minimum  ranges  through  appropriate  modulation 

of the a program. A critical  search  was  not  made  to  verify  the  possibility 
of steeper  entries  because  available  information  concerning  the  entire  abort- 

trajectory  problem  indicated  that  re-entries  for  initial  speeds of roughly 
3500 m. /sec.   most  l ikely  will   occur  for  angles  less  than l l O o .  The  range 

and  entry-arc  capabilities  at  this  speed  may  be of some  significance  for  an 
entry  at   an  angle of 90°  but they  both  decrease  drastically as the  entry 

angle  becomes  steeper. 

0 

For  true  circular  entry  speed,  the  shallowest  possible  entry  angle 

is undefined. A horizontal  circular  velocity, eo = 90 , results  in a circular 

orbit  and  consequently  no  entry i f  the  effects of aerodynamic  drag  are  absent. 
Any initial  flight-path  angle  greater  than 90° will  result  in,re-entry,  and  the 

closer  this  angle is  to 90 , the  larger  the  maximum  range.  Similarly,  a 

slight  reduction  in  initial  speed  and/or  the  presence of slight  aerodynamic 

drag  at  the  specified  initial  altitude  will  lead  to  entry.  For  the  solutions 

obtained  during  this  study,  the  initial  speed  was  circular  for  the  entry  altitude, 

but  the  atmospheric  density,  and  hence  drag,  were  defined  to  above  this 

altitude  in  accordance  with  the ARDC Model  Atmosphere,  1956. 

0 

0 

In the  circular-speed-entry  studies,  an  arbitrarily  selected  shallow 

initial  angle of 90. 50° was found  to  lead  to a maximum  range of only 138O. 

As  the  entry  angle  becomes  steeper,  the  maximum  range  decreases  until  it 
i s  only 16O for  steepest  permissible  entry, eo = 101. 75O. The  minimum 

ranges  and  the  entry-arc  lengths  also  are  markedly  less  for  the  steeper 
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entry  angles.   This  si tuation  is   i l lustrated  in  Figure 7. It  is  significant 

to  note  that  the  entry  arcs  for  the  extreme  entry  angles  do not overlap; 

consequently,  several  target  areas  will be necessary to effect  success- 

fu l  recovery of space  vehicles  re-entering  at  circular  speed if  initial 

flight-path  angles  lie  anywhere  between  the  limits of 90' and 101.75O. 

ENTRY ARCS  FOR RE-ENTRY 
SPEED 7833 M/SEC. 

ENTRY ARC  FOR A SHALLOW 
ENTRY, eo =90.50° 

h, = 

ENTRY ARC 
FOR STEEPEST 
ENTRY 80 =101.75° 

SURFACE 

120 KM 

FIGURE 7 
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When a vehicle  travelling  at  supercircular  speed  re-enters  the 

atmosphere at a shallow  flight-path  angle,  the  aerodynamically  produced 
deceleration  may  be  insufficient  to  prevent  the  vehicle  from  rising  above 

a specified  altitude limit. Thus,  the  re-entry  problem  reduces  to  the 
determination of the  shallowest  initial  angle  that  leads  to  the  satisfaction 

of the  altitude  restriction  when  the  ,vehicle is flown  with  maximum  negative 

lift.  Through  the  use of resul ts  of theoretical  analyses, as verified by 
numerical  solutions,  it  was  established  that,  for  an  entry  speed of 11,080 

m. /sec.  (essentially  escape  speed),  acceptable  re-entry  can  be  accomplished 
for  an  entry  angle as shallow as 94. 71°, but  not  for  one of 94.55O,  when  the 

altitude  limit is 150  km.  In  lieu of attempting  to  define Bo more  exactly 

within  this  narrow  range, 94. 71° was  taken as the  shallowest  initial  flight- 

path  angle  at  this  speed. 

The  steepest  entry  angle  at  escape  speed is  limited by the  pilot 

acceleration  dose  during  the  initial  dive  into  the  atmosphere.  This  dose is  

critically  dependent  on  the  precise  modulation of the  angle-of-attack  program. 
For  an  entry  angle of 99. 8 an  acceptable  pilot-penalty  value  was  achieved 

for both minimum  and  maximum  range  trajectories.  Among  the  many  trajec- 

tories  evolved  during  the  study of performance  for  steeper  initial  flight-path 

angles, none yielded  an  acceleration  dose as low as  1. 

0 

Minimum-range  capability  for  escape-velocity  entries  also is  limited 

by the  pilot  acceleration  dose.  For  the  entry  angles  studied,  this  range  de- 

c r eased   f rom 22O for 94. 71° to 15O for 99.8O. In the  case of the  shallow 

entry  angle of 94.  71°, a sufficient  margin of negative  lift  was  available  to 
prevent  the  minimum-range  trajectory  from  leaving  the  atmosphere  following 

initial  entry. Of course,  for  the  actual  shallowest  permissible  entry  angle, 

which is  between  94. 55O and 94. 71°, the  minimum-range  trajectory  would 

include a rise  to  the  specified  maximum  altitude of 150 km  and  the  resulting 

range  would  be  substantially  greater  than 22O.  
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I The  computation of the  maximum  range  for  entries at escape  speed 

becomes  particularly  difficult as the  steepness of the  entry  angle  increases. 

In these  situations,  the  angle-of-attack  program  during  the first 10% o r   l e s s  

of the  total  flight  time  must be modulated  extremely  accurately  in  such a way 

that both the  pilot-penalty  and  maximum-altitude  restrictions  are  satisfied 

in a manner  compatible  with  maximization of the  range.  The  total  pilot 

penalty is  realized  during  roughly 270 of the  flight  time  shortly  after  initial 

entry  into  the  atmosphere,  and  the  maximum  altitude  restriction,  150  km, 

occurs  later  in  the  flight  during a long  interval  when  the  aerodynamic  forces 

a r e  negligible,  thus  complicating  the  solution  process.  During  this  study, 

the  range  capability  was  computed  both by optimizing  the  performance  during 

the  entire  time of flight  and  by  combining  extremal  solutions  for  appropriately 

defined  portions of the  over-all   trajectory.   Cross  checks  were  made  to 

establish  the  compatibility of these  approaches  and  to  ensure  the  relative 

validity of the  answers.  The  maximum  ranges  given  in  Table 1 represent  

the  “best”  answers  obtained.  .These  ranges  definitely  are  realizable  under 

the  specified  conditions  and  perhaps  can  be  increased  through  appropriate 

changes  in  the  angle-of-attack  program  early  in  the  flight. 

The  entry  arcs   for   escape-speed  entry  are  shown in  Figure 8 .  For  

entry  angles of 94. 71° and 99. 8O, the  entry  arcs  overlap  to a large  extent 

indicating  the  feasibility of using a single  recovery  area.  

ENTRY ARCS FOR RE-ENTRY 
SPEED 11,080 M/SEC 

y”----l ENTRY A R C  FOR STEEPEST 

SHALLOW E 

h,,= 120KM 

F I G U R E  8 
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In  aborts  during  space  missions, of course,  the re-entry  velocities 
a r e  not subject  to  close  control;  they  will  lie  between  broad  limits  which  are 

determined by many  factors.  Based  on the results  given  in  Table 1, if  the 

speeds  may  be  anywhere  in  range  from  zero up to  escape  and  entry  flight-path 

angles   are   unrestr ic ted,   recovery  faci l i t ies  would  have  to be provided  on a 

continuous  basis  throughout  possible  re-entry  areas. A s  the  range of expected 

speeds  decreases,  and  as  probable  flight-path  angles  are  defined,  projections 
may  be  made a s  to  the  discrete  number of landing  sites  needed to effect  suc- 

cessful  recovery. 
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7. CONCLUSIONS 

As re-entry 

restr ic t ions  ar ise  on 

speeds  increase  from 750 m.  /sec.  to  escape  speeds, 

the  possible  re-entry  flight-path  angles.  The  shallow- 

ness of the  entry,  for  supercircular  entry  speeds, is limited by the  tendency 

of the  vehicle  to  skip  out;  the  steepness of the  entry  for all except  the  lowest 

speeds, by the  "acceleration-dose"  constraint.  Stringent  restrictions on initial 

flight-path  angles  which  occur  for  escape-speed  entries  are  coupled  with  wide 

tolerances on re-entry  position.  Re-entry  speeds  and  flight-path  angles 

must  be  limited  more  than  indicated by the  results  reported  here i f  a small  

number of landing  sites  is  to  offer a high  probability of successfully  re- 

Covering  aborted  spacecraft. 

The  results of this  study  define  extreme  re-entry  conditions  for  the 

specified  vehicle when subject  only  to  pilot-acceleration-dose  and  altitude 

constraints.  The  re-entry  corridor  may  be  changed if  any of the  following 

considerations  are  included:  the  total  heat  and/or  heating  rate  is  constrained; 

the  pilot-acceleration-endurance  function  includes  pilot  attitude  dependence; 

or  the  magnitude of the  angle of attack is limited. 

Although the  penalty  function  method  has  been  used  successfully  to 

satisfy  altitude  ceilings  which  lie  within  the  atmosphere,  it  was not  effective 

in  controlling  skips  out of the  atmosphere. A more  direct  method  yielding 

firmer  control of the  maximum  altitude  appeared  to  be  necessary.  Since  the 

vehicle is unpowered,  its  entire  exo-atmospheric  trajectory is determined  by 

the  dynamic  state  with  which  it  leaves  the  atmosphere.  Thus  the  constraint 

should  not  be on  a terminal  quantity  as it is  using a penalty  function  but  directly 

on  this  dynamic  state.  Part I1  of this  report   describes a new  method  which 

relates  the  maximum  skip  altitude  to  the  dynamic  state  at  the  edge of the  atmos- 

phere  and  constraints  this  critical  state. In this  way,  the  steepest-ascent 

optimization  procedure  is  used  in a much  more  efficient  manner  and  the  solution 

of escape  speed  re-entry  problems is facilitated. 
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APPENDIX A 

7833 

11080 

MAXIMUM  AND  MINIMUM RANGE TRAJECTORIES 

AND CONTROL  HISTORIES 

Graphs of the  maximum  and  minimum  range  trajectories  and  associated 

control  histories  for  the  l imiting  values of entry  flight-path  angle  at  each of 

the  several  entry  speeds  employed  are  given  on  the  following  pages.  The 

graphs  for  the  steepest  possible  entry (i. e . ,  a flight  path  angle of 180°) a t   a n  

initial  speed of 750 m/ sec. are omitted  because  the  range  'capability is  mere ly  

0.05O. 

INDEX TO GRAPH-S: 

Initial  Speed Initial  Flight- Max/Min  Page 
meters /   sec  Path Angle Range 

degrees  

750 
- 

90 Min  1-3 1 

90 Max  1-32 
3500  90 Min  1-33 

90 Max 1-34 
110  M in I- 35 

11 0 Max I- 36 
90.  5 Min I- 37 

90.  5 Max  1-38 

101. 75  Min  1-39 

101.75 Max 1-40 

94.71  Min  1-4 1 

94.71 Max 1-42 

99.8 Min  1-43 

99.8 Max 1-44 

" 
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PART I1 

EXO-ATMOSPHERIC . __ ALTITUDE. 

CEILINGS ON 
O P T I M U M  RE-ENTRY  TRAJECTORIES 



1, SUMMARY 

An upper bound  on altitude is often a constraint  included  in  re-entry 

Optimization  problems.  For  exo-atmospheric  altitude  ceilings  imposed upon 

unpowered  lifting  vehicles,  this  requirement  reduces  to  an  inequality  constraint 
on  the  dynamic  state  in  which  the  vehicle  leaves  the  atmosphere.  The  path is 

controlled  within  the  atmosphere by varying  the  aerodynamic  forces  through  the 

angle of attack  and  bankangle.  The  optimum  control  programs  for  this  non-linear 

system arefound  using a high  speed  digital  computer  and  the  steepest-ascent 
method  which  generates a sequence of successively  improved  control  histories. 

For  an  inverse-square  gravitational  f ield,   an  analytic  expression is found r e -  

lating  the  maximum  skip  altitude  to  the  dynamic  state of the  vehicle  at  the  edge 
of the  atmosphere.  This  relation  provides  the  information  needed to  define  an 
intermediate  point  inequality  constraint.  The  steepest-ascent  mechanism  then 

finds  the  optimum  control  programs  during  the  entire  time  prior  to  departure 

from  the  atmosphere  which  ensures  acceptable  maximum  skip  altitude. A n  
added  bonus is the  elimination of the  need for numerical  integration  over  the 

Keplerian  ellipse  for both  the  equations of motion  and  the  adjoint  equations. 

These  analytic  solutions  result  in a considerable  saving  in  computer  time if  the 

skip-out is  of long  duration. 

2. INTRODUCTION 

Lifting  vehicles  re-entering  the  earth's  atmosphere  have  some  control 

over  their  descent  trajectories.  To  find  the  "best"  control  programs  for a given 

mission is  the  function of an  optimization  procedure.  The  steepest-ascent  method 
begins  with  an  arbitrary  control  program  which  in  general is non-optimal  and  may 

not  even  bring  the  vehicle  to  the  desired  terminal  state.  It is ,  however,  an 

iterative  technique  which  generates a sequence of successively  improved  control 

programs.  The  measure of improvement is the  increase  in  the  pay-off  and  the 

correction of the  terminal  state. 

One  constraint  often  included  in  the  problem of optimizing  re-entry 

trajectories is an  altitude  ceiling. A maximum  altitude is prescribed  apriori  

and  the  vehicle  must  not  exceed  it  e.ither  during  the  entire  flight  or  during a 

specified  portion of it. A technique,  which  has  been  incorporated  into  the 

steepest-ascent  method,  to  satisfy  this  condition is the  altitude  penalty  function. 
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A simple  way  to  do  this is to  compute  the  area  in  the  alt i tude  versus  t ime  graph 

which lies  above  the  specified  maximum  altitude  for  each  non-optimal  trajectory. 

This   a rea  is included as  a terminal  constraint.  The  condition  that  this  violation 

vanish is then  added  to  those  which  determine  the  corrections  to  the  control 

program.  The  altitude  violation is removed  by  the  time  the  optimal  trajectory 

is found. For  altitude  ceilings  which  lie  inside  the  atmosphere,  the  altitude 

penalty  function  was  satisfactory,  although  the  process  aid  not  converge as 

rapidly as the  more  direct  method of instantaneous  inequality  constraints, 

recently  developed  at  Raytheon  and  presented  in  References 2 and 3 .  

The  penalty  function  method  proved  difficult  to  apply  to  maximum  range 

problems  for  vehicles  entering  the  atmosphere  at  escape  speeds  and  subject  to 

altitude  ceilings  outside  the  atmosphere.  The  skip  altitude is  extremely  sensi- 

tive  to small changes  in  the  dynamic  state of the  vehicle as it  leaves  the  atmos- 

phere.  Another  method  was  needed  for  these  problems, 

The  exo-atmospheric  portion of the  path of an  unpowered  vehicle is  

completely  determined by its  dynamic  state as i t   leaves  the  atmosphere.   For 

a spherical  earth,  an  analytic  expression  can be  found  which relates  the  maxi- 

mum  skip  altitude  to  the  velocity  at  the  edge of the  atmosphere.  This  condition 

permits  the  inclusion  in  the  computer  program of an  intermediate  point  inequality 

constraint.  It is treated in  the  same  way as a terminal  constraint  except  that  its 

influence f u n c t i  0 n is calculated  only  from  the  initial  time  until  the  time  the 

vehicle  leaves  the  atmosphere.  The  control  program is altered  during  this  time 

period  in  such a way  that  the  pay-off  and  the  terminal  constraints  are  improved 

subject  to  the  additional  condition  that  the  vehicle  exit  the  atmosphere  with a 

velocity  which  ensures  acceptable  maximum  altitude.  This  constraint is  then 

dropped  from  the  system  and  plays no part  in  changes  made  to  the  remainder 

of the  control  program.  This  method is  more  direct  than  the  penalty  function 

approach  and  should  be  used  in  high  speed  re-entry  problems. 
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3 .  LIST OF SYMBOLS 

C+, drag  coefficient 

lift  coefficient 

E energy  divided by m/2 
afi 

F matr ix  of partial  derivatives 

G I 1  1 1  I 1  1 1  

integrals  used  in  steepest-ascent  procedure 

see  equation (19) 
T 

earth  radius 

S vehicle  reference  area 

T trajectory  final  time 

VT total  speed 

W weighting  matrix  in  steepest-ascent  procedure 

(dP)2  mean  square  perturbation of the  control  variable  programs 

e eccentricity of Keplerian  ellipse 

*i 

h angular  momentum 

function  in  equations of motion,  see  equation ( 1 )  

} right  hand  vector  triad  used  in  Keplerian  Analysis 

m vehicle  mass 

r radial  distance of vehicle  from  center of ear th  

rA radius of edge of atmosphere 

rMAX prescribed  radius  to  altitude  ceiling 

r radius  vector of vehicle - 
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4 
V 

X. 
1 

- X 

Q 

'e 

(Y 

e 

initial radius  vector  in  Keplerian  Analysis 

velocity  vector of vehicle 

t ime 

initial  time 

spherical  velocity  components of vehicle 

initial  velocity  vector  in  Keplerian  Analysis 

a state  variable 

state  variable  vector 

pay off function 

3 evaluated  at T 
axn 

a terminal  constraint  

terminal  constraint   used  to  determine T 

vector of terminal  constraints 

mat r ix  of partial   derivatives - 8% 
%Xj 

angular  velocity of ear th  

angle of attack 

vector of control  variables 

nominal  vector of control  variables 

coordinate  system  used  in  Keplerian  Analysis 

co-latitude of vehicle 

solution of adjoint  system of differential  equations 

influence  function  vector  for pay-off 

I 1  I 1  I1 I '  kth terminal  constraint  
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* e influence  function  matrix  for  terminal  constraints 

P constant  in  steepest-ascent  procedure,  see  equation (16) and (17 )  

Pe gravitational  constant 

V - vector of constants  in  steepest-ascent  procedure,  see  equation (16) 
and (17 )  

P air density 

U bank  angle 

@ longitude  angle 

Subscripts 1, 2, 3 on  state  variables  u,  v, w, r ,  8, @, and  time T 
indicate  critical  points  on  the  Keplerian  ellipse  portion of the  trajectory. 

1 is  the  point at  which  the  vehicle  leaves  the  atmosphere, 2 the  point of 

maximum  altitude  and 3 the  point of atmosphere  re-entry. 
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4. MATHEMATICAL  MODEL 

The  vehicle is  a mass  particle  acted upon by the  inverse  square 

gravitational  field of the  earth  and  in  addition,'  when  in  the  atmosphere by its 
l i f t  and  drag  forcer.  The  control  functions  are  angle of attack  and  bank  angle 

which  modulate  the  aerodynamic  forces.  The  motion is  described  in a 
spherical  coordinate  system  concentric  with a spherical  rotating  earth of 

radius RE, which is  enveloped by an  1962.U.S. model  atmosphere.  The 

"edge of the  atmosphere" is defined as a sphere of radius rA. The numerical  

value of rA is chosen  with  the  vehicle  characteristics  and  entry  speed  in 

mind so that  the  aerodynamic  forces  are  negligible  at  this  altitude  and  the 

model is continuous.  The  coordinate  system is shown in  Figure 1. 

Coordinate  System 

d e  

Figure 1 

The  equations of motion  are: 
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5. OPTIMIZATION  PROCEDURE 

A vehicle  entering  the  earth’s  atmosphere  with  arbitrary  control  pro- 

grams  and  initial  conditions  will  have a trajectory  belonging  to  one of four 

classes.   These are shown  in  Figure 2. 

r 

r m ax 

rA 

Types of Re-Entry  Trajectories 

?I3 
no 

control 

Figure 2 t 

The  path  labelled A has  no  exo-atmospheric  segment  after  the  initial 

penetration of the  atmosphere. It satisfies  the  altitude  constraint  and  can be 

optimized  using  the  steepest-ascent  procedure  which is  summarized  in  Section 5.1 ,  

The  path  labelled B is also  satisfactory  and  will  be  optimized  in  the  same 

way as path A except  numerical  integration  will  be  suspended  during  the  skip-out 

phase.  The  re-entry  state  will  be  computed  from  the  exit  state  using  analytic 

solutions of the  two  body  problem.  The  inclusion of these  solutions  in  the  optimi- 

zation  procedure is shown  in  Section 5.2while the solutions  themselves  are  listed 

in  Section 6 .  
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The  path  labelled C violates  the  altitude  ceiling  and  the  steepest-ascent 

procedure  for  altering  the  control  programs  must now include  the  intermediate 
point  constraint on the  dynamic  state  in  which  the  vehicle  leaves  the  atmosphere. 

This  addition is explained  in  Section 5. 3 Numerical  integration  will  again  be  sus- 

pended  for  the  exo-atmospheric  portion of the  trajectory  and  replaced by the 
analytic  solutions. 

The  path  labelled D is an  escape  trajectory.  The  steepest-ascent 

procedure  may  succeed  in  converting  this  path  to a return  one.  Section5.4indicates 

how this  may  be  done. 

5 . 1  .Steepest-Ascent "" Optimization  Procedure 
. .  . " 

This  section is  a summary of the  mathematical  tool  used  to  find 

an  optimum  trajectory.  It is described  in  detail  in  Reference 1. This  dis- 
cussion is  included so that  the  use of an  intermediate  point  constraint  to  satisfy 

an  exo-atmospheric  altitude  ceiling  may  be  understood. 

The  motion of the  vehicle is described by the  set of non-linear  dif- 

ferential  equations  given  in  Section 4. These  equations  contain  the  unspecified 

control  functions  angle of attack a (t)  and  bank  angle, (T (t) . The  problem is  

to  find  the  control  histories  which  brhg  the  vehicle to  the  terminal  time,  T,  in 
such a dynamic  state  that a given  function of the  terminal  state Q , called  the 

pay-off, is maximized  and  given  functions *k = 0 for k = 1, 2 ,  - * p, called 

terminal  constraints,'arc  satisfied. 

The  steepest-ascent  procedure  requires  that  the  engineer  choose 

"reasonable"  control  functions a (t)  and (r (t)  defined  over  the  interval 

[ to, T 1 i n  order  to  start  the  iterative  process.  Using  these  nominal  control 

programs  and the  given  initial  values of the  state  variables,  the  equations of 

motion  are  integrated  numerically  from t to T ,  which is determined by one of 
the  terminal  constraints,  say (t = 0. This  stopping  condition of the  numerical 

integration  can be any of the  terminal  constraints  provided e (T) 0. The 

resulting  trajectory  will  not,  in  general,  maximize Q nor  satisfy  any = 0 

except  the  pth  one. It is now necessary  to  compute  changes  in  the  control  functions, 

6 a (t)  and 6 (r (t) so that  the  next  pair of controls: a1 (t) = a (t) t 6 a (t)  and 
u1 (t) = u0 (t) t 6 (t)  will  produce a better  trajectory.  The  criterion  which 

determines  the  changes  in  the  control  programs is the  maximization of the  change 

0 0 

0 

P 
P 

0 
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in  pay-off,  subject  to  specified  changes  in  the  terminal  constraints  for a specified 

mean  square  perturbation of the  control  functions.  The  calculations  are  based  on 

"small" perturbations  about a nominal  path.  The  amount of change  in  the  control 

programs  which is justified, i. e .  which  will  produce  the  effect  predicted by the 

linear  theory, is limited.  Thus,  the  process  must  be  repeated  until - no changes 

in  the  controls  result: 6 a (t) = 6 Q (t) 0. 

The  expressions  for  the  changes  in  the  control  are  derived  here. 

Let x (t) be the n dimensional  vector of state  variables,  a (t) be the m dimen- 

sional  vector of control  variables.  The  differential  equations of motion  are: 
- - 

X.' = f i  (x1 J x2. . . x 
1 

n ,  a l .  a2 ,  - . . a  t) m' 

a f i  

ax j 
Let F be the  nxn matrix  with  genera1  element - and 

afi 

aaj 

G be the nxrn matrix  with  general  element - with 

all partial  derivatives  evaluated  on  the  nominal  trajectory. 

Because we are  concerned  with  changing  terminal  quantities, 

Q and 9 k, we need  expressions  which  relate  changes  in  terminal  conditions 

to  changes  in  the  entire  control  histories. These can  be  found by considering small 

perturbations  about  the  nominal  path.  Fro&  Equation (1) we have: 

If we define  an n dimensional  vector X (t) as one  which  satisfies  the  set of adjoint 

differential  equations: 
- 

- (t) = -F' - X (t) 
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Where  means  transposed  matrix, we can  combine  equations (2) and (3) to  give: 
I 

Integrating  this  equation  from t to T and  assuming  for  simplicity  that  the  initial 
* 

0 

state is  fixed so that 6 x (t ) = 0, we have: 
- 0  

I 

A (T) 6 x (T) = - - 

Here we  have  an  expression  which  relates  changes  in  terminal  conditions  to  changes 

in  the  entire  control  history. We need  to  relate  this  to  changes  in  the  pay-off  and 

terminal  constraints. With this  in  mind, we seek  expressions  for djp and dlkk. 

We know: 

and so 
n I 

where I means  the  partial  derivative is  evaluated  at  T. In the  same way: 

'*k 

j = l  j T 
d * k =  "I 7 1 -J b x . ( T )  t @ , d T ,   k = l , 2 , .  . . , p .  

( 7 )  

But,  since * = 0 i s  the  stopping  condition  for  the  numerical  integration  and is  

always  satisfied, we choose 
P 

*P = Thus: 

* Reference 1 provides  the  derivation  without  this  assumption. It is made 
here  merely  for  the  sake of clarity. 

11-11 



In order  to  simplify  the  notation,  let - represent   an n dimensional  row 

vector  with ith element 
? T  
a I and  let  a * be a (p-1) x n matr ix  

a @  
B X  - 

B X  
8.Q i 

- 
with general term I . Replacing d T in  Equations (6) and (7) by its 

value  given  in  Equation (8), we  have: 

where e is  a (p-1)  dimensional  vector  with  ith  element Qi.  Now  we can  use 

Equations (9) , (10)  and (5) to  relate d @ and d !I? to - 6a . 

We define  influence f u n  c t i  o n s which a r e  p  n dimensional  vectors, 

h (t), A (t)  for k = 1, 2, . . . , p-1.  each of which  satisfies  the  adjoint  differential 
-@ 
equations  and  whose  numerical  value  for t = T -  is  given by: - *k 

Let A \k (t)  be  the n x p-1  matrix  with  general  column 1 q, (t) 

Combining  equations  (11),  (12), (9), (10)  and (5) we  have: 

1 T I  
d $  = A (T) (TI = [ X + G 6a dt 

- Q  
0 

I1 -I2 



We can no'w apply  the  criterion of the  steepest-ascent  procedure. 
We seek  changes  in  the  control  functions 6a which  will  maximize  the  change 

in  pay-off, d Q for  specified  changes in the  terminal  constraints d * and 
for a specified  mean  square  perturbation of the  control  function  defined by: 

(dP)' = - 6 a  W - 6 (Y dt  (15) 
I 

Where W is a weighting  matrix  chosen by the  engineer. To do this,  we  form, 
from  Equations (1 3),  (14),  and (1 5),  the  linear  combination: 

m m 

or,  combining  the  integrals: 

d Q i  = 
I 

A'+ G - p e' W) 6a dt 

to 

Where v is a p-1  dimensional  vector of unknown constants  and p is an unknown 

constant. To maximize d + , we set  its  variation  with  respect  to  the  control 

function  to  zero.  Using  Equation (17) for  this  and  coupling  it  with  Equations  (14) 

and  (15), we find  the  constants v and p and 

- 

- 

+ W - l G ' A p  I ,  -1 drk w 
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m 

Thus,  the  next  control  program, E (t) = (Y (t) + 6a (t),  will  produce a 
trajectory  with  terminal  conditions  which  have  been  changed by the  requested 

amount d and  with  maximum  possible  increase  in  the  pay-off  provided  the 

"amount" of specified  control  variable  change  measured by (dP) is not so large 

that  the small perturbation  theory  used is invalid  or  the  requested  changes d @ 

are  larger  than  can be  achieved  with  this  (dP)  which is indicated by  the t e r m  

in  the  square  root of Equation (18) being  negative.  The  procedure is  then  repeated 

replacing @,(t)  by al(t).  The  iterations  terminate  when CY n+ = @$I. 

- 0  - 

2 

2 

This  process  is   summarized  in  Figure 3 ,  Steepest-Ascent 

Optimization  Procedure,  Flow  Chart A for a class  A re-entry  trajectory.  

This  class  includes all trajectories  which  remain  in  the  atmosphere  after 

initial  penetration.  Thus r = rA shortly  after t and  never  again.  Tra- 

jectories of the  types  labelled B ,  C and D in  Figure 2 a r r ive   a t  rA a t  

least  once  more  and so the  condition  that r rA a second  time  is  satis- 

fied  only  by  class A trajectories.  

0 

I1 -14 



Steepest-Ascent  Optimization  Procedure 

Flow Chart A 
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Calculate 
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Figure 3 
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5.2 SATISFACTORY SKIP TRAJECTORIES 

The  path  labelled B in   F igure  2 has  an  exo-atmospheric  segment 

which  satisfie?  the  altitude  ceiling.  The  nature of this  segment  is  

completely  determined by the  dynamic  state of the  vehicle  as  i t   leaves  the 

atmosphere.  The  derivation of the  state  at  any  point of the  Kepler  ellipse 

as  explicit  functions of the  radius  and  velocity  vectors  at  the  edge of the 

atmosphere is  given  in  Appendix A.  The  solution is  evaluated,  in  particu- 

lar ,  for  the  state  at  the  point of maximum  altitude  and  the  re-entry  point. 

These  solutions  are  converted  to  the  spherical  coordinate  system  used  here 

in  Appendix B. 

Energy, E, and  angular  momentum,  h,  are  conserved  in  the two * 
body problem.  The  return  trajectory  has  negative  energy  and  this  fact  is 

used  to  isolate  the  escape  trajectories.  Thus: 

2 2 2 2’e E =  u1 t v1 + ( w l  + R r 1  sin e l )  - - < 0 e r l  

Where  the  subscripts 1 refer  to  the  values of the  velocity  and  position 

components  at  the  edge of the  atmosphere.  In  particular, r - The 
time  T1  is  determined  when r = I A  ’ the  second  time,  and  at  this  time 

E is  evaluated. If i t   is   negative,  we  can  evaluate  the  maximum  altitude 

from  the  expression: 

1 - r A ’  

’e + J ’e + h z  E 
r2 - - - E  

Where 

h2 = r: [v: + ( w l  t Re r l  sin e l )  . “1 
This  condition  can be used  to  separate  the  return  trajectories  which  satisfy 

the  altitude  constraint  from  those  which  violate  it.  Thus : 

r2 < r m ax 

distinguishes  satisfactory  skip  trajectories. 

*E ,  a s  used  here,  is  equal to energy  divided by m/Z. 
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The  non-linear  differential  equations of motion  are  integrated 

numerically  from t to T1,  but  this is  unnecessary  for  the  time  interval 
from  T1  to  T3.  Section 6 lists  the  solutions  for  the  states  at  the  top of 

the  trajectory  and  the  re-entry  point as functions of the  state  at  T1 . At 
T1 these  calculations  are  performed  and  the  results  printed.  At T,g the 
numerical  integration is  resumed  using,  the  values of the  state  at  T a s  

"initial"  conditions. 

0 

3 

The  adjoint  differential  equations  are  integrated  backward  from 

T to  to.  Again  it  is not necessary  to  integrate  numerically  over  the  skip 

portion of the  trajectory.  The  derivation  for  the  expressions  which  relate 
the  values of the  influence  functions a t   T I   t o   t hose   a t  T is  given  in 

Appendix C. The  solutions  are  listed  in  Section 6 .  Suspension of the 

numerical  integration  for  the  time  interval  from T to  T1  for all the 
influence  functions  represents a considerable  saving  in  computer  time. 

3 

3 

This  modification of the  steepest-ascent  procedure a s  well as  

those  discussed  in   sect ions5.3d 5.4are  shown in  Figure  4,  Steepest- 

Ascent  Optimization  Procedure,  Flow  Chart B. 

5.3 UNSATISFACTORY SKIP TRAJECTORIES 

Re-entry  trajectories  like  the  one  labelled C in  Figure 2 violate 

the  altitude  ceiling.  That  this  will  happen  is known a t   T1   a s   soon  as  r 

is  calculated  from  the  expression: 
2 

+,/p f= + h 2 E  
r 

-E 

with E < 0 .  The  altitude  constraint  requires  that 

'e + /p: + h2 E 
- E  

< r  m ax 

This  condition  can  be  included  in  the  steepest-ascent  procedure by  using a n  

intermediate  point  constraint.  Its  contribution  to  the  calculation of the  change 
in  the  control  functions is  treated  in  the  same  way  as  that of a terminal con- 

straint  except  its  influence  function  is  computed  over  the  time  interval 

[ t o ,  T ] instead of t o ,  T] . 
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The  intermediate  point  constraint i s  then: . 

*I = ' e t  J 'e 2 t  h 2 E  - r  < o  
- E  m ax  

with  stopping  condition : 

!I! = r - rA , second  time*= 0 
P 

The  influence  function, h91 (t)  then  has  "initial"  value : 

Where 

The  adjoint  differential  equations  are  then  integrated  from T I  to  to 

using A I (T ) to  give  the  influence  function  for  the  intermediate 
-at 1 

point  constraint, I (t)  defined  over e 
In  the  expression for the  change  in  the  control  variable  program 6cu (t)  given 

in  equation (18). the  matrix of influence  coefficients  associated  with  the 

terminal  constraints & must  be augmented by A during  the  time  interval 

[ to T I  ] . This   is   t rue  a lso  for  A occurring  in  the  integrals  in  equation 

(19). This  addition is  shown iri Figure 4, Steepest-Ascent  Optimization  Pro- 

cedure,  Flow  Chart B .  

e -4 

*I. e . ,  r = rA the  second  time  after  initial  entry  from r (0) > r a ,   o r   more  

generally  stated, !PI determined by r - r - 0 and  positive. 
P A -  
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5.4 ESCAPE  TRAJECTORIES 

A re-entry  vehicle  which  penetrates  the  atmosphere  and  leaves  it 

again  with  non-negative  energy is  on  an  escape  trajectory.   I t   may be 

possible  to  alter  its  control  program  sufficiently so that  the  trajectory i s  

converted  into a return  one.  The  steepest-ascent  procedure is  precisely 

the  tool  to  do  this  job.  As  shown  in  Figure 4, when  the  energy is  computed 
at  the  edge of the  atmosphere  and  found  to  be  non-negative,  the  original  problem 
is  bypassed  and  the  desired pay-off  and terminal  constraints  replaced by 

Q = - E , i. e.  energy  to be minimized  and  only  one  terminal  constraint,  the 

stopping  condition, !P = r - rA,  second  time = 0 o r  T = TI.  Thus  the 
control  program  over  the  time  interval [ t TI]  is  altered  iteratively  until 

the  energy  at  TI  becomes  negative  or  until  it   has  been  minimized.  In  the 
f i r s t   case ,  we  have  succeeded  in  correcting  the  control  program  sufficiently 

so that  the  escape  trajectory  has  been  converted  into a return one  and  the 

original  problem i s  resumed.  In  the  second  case,  we  have  minimized  the 
energy  at  T I ,  but i t   is   st i l l   posit ive  or  zero.   This  will   happen  for  high  speed, 

shallow  re-entries  where  the  vehicle's  negative  lifting  capability  is  insufficient 

to  keep  the  vehicle  in  the  atmosphere  long  enough  to  dissipate  enough of i t s  

energy.  The  altitude  constraint  cannot  be  satisfied  and  the  problem is ill- 

defined. 

* 
P 

* If penalty  functions a r e  being  used  to  achieve  in-flight  inequality  constraints 
on  acceleration  or  heating  rate,  they  should be constrained  to  appropriate 
terminal  values  during  this  minimization. 
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6 .  ANALYTIC  SOLUTIONS FOR EXO-ATMOSPHERIC  SEGMENTS OF PATHS 

A typical  re-entry  altitude vs time  history  which  includes  one  exo- 

atmospheric  segment  that is a.Keplerian  ell ipse  is   shown  in  Figure 5. 

r 

rA 

R E  

Re-Entry;  Trajectory 

I 
t 
I 
I 
I 
I 
I 
I 

" edgg of atmosphere 

I \ 
I I \ 

T 2  T3 Tf t 

The  times T 1,  T  and T a r e  the  time  the  vehicle  exits  the 2 3 
atmosphere,  the  time of maximum  altitude  and  the  re-entry  time  resp'ectively. 

The  dynamic  states  at .T2 and  T are   determined by the  dynamic  state  at T 1  

for  an  inverse  square  gravitational  f ield.   The  solutions  are  derived  in 

Appendix A .  These  solutions  are  converted  to  the  spherical  coordinate  system 

shown ih Appendix B . 

3 

When  the  differential  equations of motion  can be integrated  analytically 

from  T1  to  T3,  the  adjoint  equations  can  also  be  integrated  analytically  from 

T 3  to T I .  The  proof of this  is  given  in  Appendix C. If the  analytic  solution  for 

the  jth  state  variable  is : 
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then : 

This  relation,  together  with  the  solutions gi l isted below  yield - A (T1) 

in   t e rms  of &.(T3).  This  applies  to all the  influence  functions 

A a n d h  *. "ih 

The  resul ts   are   l is ted  here .  

F o r  

2  2 2 'Pe E = u l  t v1 t (wl t ne r1 sin e , )  - - 
r l  

h2 = r: [vl 2 t (wl t Qe r1 sin ell2] 

where  the  dynamic  state  at T I  is denoted by (rl, el, u l ,  vl, wl)  , Re 
i s  the  constant  earth  rotation  rate  and p i s  the  gravitational  constant.  The 

states  at  T  and  T are  given  by: 
e 

2 3 

u r v  

pe e 
% COO el - sin el 
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h . u  r 2 

T2 = T1 t 1 1  
2 

P e 2 W  e 1 
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r 3  = r l  

e3 = COB 

2 r  u v 1 1 1  

sin e3 - -{" 
for O<e3 < T 
" 

u3 = - u  1 

1 

T3 = 2 T2 - T1 
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a +3 av aw 
aw 1 

3 hw(TI) =- ae3 awl A e (T 3 ) +- awl h + (T 3 ) +  - a ~ ,  Av(T3) + - Aw (T3) 
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7. CONCLUSIONS AND RECOMMENDATIONS 

Recent  developments  at  Raytheon,  in  the  mathematical 

theory of the  steepest-ascent  technique  have  produced a new, direct  method 

for  incorporating  in-flight  inequality  constraints  into  the  optimization 

procedure.  Originally,  the  steepest-ascent  method  could  handle  terminal 

constraints only.  The  penalty  function  concept  was  an  ingeneous  way of 

converting  in-flight  inequality  constraints  into  terminal  constraints. 

Computer  programs  for  production  use  were  written  making  wide  use of 

penalty  functions  and  were  extremely  effective  tools  for  many  trajectory 

optimization  studies. 

Research  was  conducted  to  extend  the  capability of the 

steepest-ascent  technique,  especially  in  the  area of in-flight  inequality 

constraints. A direct  method  was found  which  produced  optimal  trajec- 

tories  with  segments  which  lie  on  the  constraint  boundary.  The  necessary 

conditions  for  an  extremum  had  to  be  extended  to  provide  optimal  switch- 

ing  conditions.  Test  computer  programs  were  written so  that a compari-  

son  with  the  penalty  function  method  could  be  made.  The  results  proved 

that  the  direct  method  was  much  faster  in  finding  the  optimal  trajectory. 

This  study  is  described  in  Reference 3 .  

The  re-entry  corridor  study  described  in  the  first  part of 

this  report  included a maximum  altitude  constraint.  The  penalty  function 

method  had  proved  adequate  for  satisfying  altitude  ceilings  within  the  sen- 

sible  atmosphere;  however,  the  optimal  trajectories  required  for  this  study 

were  subject  to  exo-atmospheric  altitude  ceilings.  The  penalty  function 

method  did  not  provide  sufficient  control  for  sensitive  high-speed  trajector- 

ies. 

The  direct  method of Reference 3 had  been  used  to  find 
optimal,  high-speed  re-entry  trajectories  subject  to  altitude  ceilings  within 

the  sensible  atmosphere. In the  current  study,  attention  was  directed  to 

extend  the  direct  method  to  solve  problems  with  exo-atmospheric  altitude 

ceilings. It became  clear  that  such  problems  could be solved  using  an 

intermediate  point  constraint  which  acts  directly  to  constrain  the  maxi- 

mum altitude.  This  method  is  particularly  attractive  for  use  with a 

spherical  earth.  In  the  inverse-square  gravitational  field,  an  analytic 

expression  can be found  which relates  the  maximum  altitude to the  dynamic 

state  with  which  the  vehicle  leaves  the  atmosphere.  For  such a 
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situation,  the  intermediate  point  constraint  can  be  placed  on a function 
of the  state  at  the  edge of the  atmosphere.  Thus  the  optimization  process 

may  be  employed  with  great  effectiveness  during  the  interval  when  the 
vehicle  initially  re-enters  the  atmosphere  to  satisfy  an  exo-atmospheric 

altitude  ceiling  which is reached  much  later  in  the  trajectory.  Maximum 

altitude  constraints,  whether  the  specified  ceilings  are  inside  or  outside 

the  atmosphere, now can  be  handled by  the  direct  method. 
On the  basis of work  initiated  during  the  concluding 

months of the  current  contract,  it   appears  that if the  mathematical  model 

for  the  optimization  problem  uses  an  oblate  earth,  the  intermediate  point 

constraint   must  be  set   directly  to  maximum  alt i tude and  applied  at  that 
point.  It  would  be  useful i f  the  effect of earth  oblateness on the  Keplerian 

trajectory  could  be  expressed  analytically.  Then  it would be  possible  to 
apply  the  intermediate  point  constraint on  a function of the  dynamic  state 

of the  vehicle  at  the  edge of the  atmosphere  for  either  spherical  or  oblate 

earth. In addition,  numerical  integration  could  be  suspended  over  the 

skip-out  portion of the  trajectory  for  an  oblate  earth  also,  and  consider- 

able  saving  in  computer  time would result. Although  the current  work  in 
the  development of the  necessary  analytical  relations  has  proved  unfruit- 

ful,  it  is  highly  recommended  that  further  effort  be  expended  in  this  area 

because of the  high  probability  that  future  trajectory  studies,  involving 
extremely high  entry  velocities,  will  include  many  exo-atmospheric 

segments. 
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Given : 

APPENDIX A 

KEPLERUN.  TRAJECTORIES 

- r (to) * r and - i. (to) 

T o  Find: - r (t)  and i. (t) - 

I. Constants of the  Integration 
Evaluating  the  derivative  and  using  (Al), we have : 

- - ( r  x i - )  = r x i: t i- x i- d 
dt - - - - - - 

= 0 .  

Thus : 

In Part icular  : 

- r x i- = constant = h - - -  

I 

h = r   x v  
- 0 - 0  

Equation  (A3)  shows  the  path is  planar.  Choose  the ( 5 ,  77 ) plane 

to  be  the  plane of and v assuming  these  vectors  are not  collinear. 

The 5 axis  is perpendicular  to  this  plane  and  in  the  direction of h . 
-0' 

- 
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Evaluating  the  derivative, 

d pe - ( ?  X h )  = - -  dt - - 3 -  r x ( r  - x - ? )  + 0 
r 

Thus : 

pe i - x h = -  r + constant (A 5) r -  - - 
We define  the  vector  constant of integration  to be p e where e -  

l 1 
- e = - ? x h - -  - r -  

pe - 
r 

In particular : 

1  1 e = -  v x h - -  - Pe -0 - r - o  r 
0 

Using (A4) : 
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Expanding  the  triple  product: 

Note  that - e is  in  the ( t ,  g ) plane.  Choose  the 5 axis in  the 5 

direction  and  since  the 5 axis  has  been  chosen  in  the h direction, 

the g axis completes  the  right  hand  triad.  The  coordinate  system 

is then: 

I 

with i , i , i unit vectors.  - 5  - 7  - 5  
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11. Solution in terms of Initial  State 

From  the  preceding  sketch,   we  see:  

r = i r c o s f  t i r s i n f  - -5 -77 

Differentiating , we  have : 

E = i [e cos  f - r - sin f J  

t i sin f t r -cos  f] 

df 
- -5 dt dt 

df 
-7 dt  dt 

We need  expressions  for   r ,  , - i n   t e rms  of the  independent d r  df 
dt 

variable f and  fn i and i in   terms of r and v . (A6) can be 

written: 
-5 -77 -+ "0 

Multiplying by - r , we  have : 

1 r = - ( i - x h ) . r  - e . r  
p e -  - - " 

1 
= - ( r x i - ) . h  - e . r  

p e -  - - " 

- h2  

pe 
" - e r   c o s  f 

Thus:  - h2 

pe 
1 t e c o s  f r =  

which  describes  the  path. 

Recalling (A3) : 

h = r x i -  - - - 
and  resolving - i- into  radial  and  transverse  components,  we  have: 

h = r  - 2 df 
dt  
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Differentiating (Al2) and  using (A13), we  get : 

Thus: 

But 

And 

d r  - e pe 
dt h 
"- sin f 

(A9) can  be  written as: 

- h = h i  
-5 

Thus : 

or  



Substituting (A12),  (A13),  (A14),  (A15) and (A16) into 

(A10) and ( A l l ) ,  we have: 

h2 
v . v  1% ' r 

r =  =- - ) c o s  f t "0 

r 
0 ro 

With 

And 

h = l r  x v  
- 0 - 0  

e =  
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111. Special  Cases  for  Elliptical  Trajectories 

A. The maximum  value of r occurs   for  f = t~ . - 

B. Re-entry  occurs  for f = 2 a  - fo . 

- r ( 2 a  - f o )  = 

‘opee 

i- ( 2 a  - f o )  = 
v . v  

- 2 r e  
0 

2 
2 ( L  ’ %) 



IV. Time  Dependence 

The  last  integration  proceeds  from  equations (Al3) and (A12) . 

df  = pe dt 

( 1  + e  cos  f )  2 "7- 

To integrate  this,  let 

f J l + e  

d r T  tan - 

7" 

cos f = cos  - - sin - 2 . f  2 f  
2 2 

( 1 - e ) - ( 1 t e ) Z  

( 1 - e ) t ( l t e ) Z  

2 

2 cosf  = 

This  substitution  yields : 

J 1 - e  

Integration  gives: 

. z  
2 

e Z  pe 2 

-- ] = - ( t  - t o )  

( 1 - e  1 2 3/2 1 t  3 h3  
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Returning to the independent variable f , we have: 

, f  

This becomes : 

2 h3 t = t  0 + tan; - t a n F  t an  & 1 
2 2 312 

Pe (1-e ) 

- -  
r i n f  pe (1-e 1 sin fo  f 0 I e h  

3 

2 2 1 + e c o s f  - l + e c o s  

For the special cases discussed i n  Section 111, we have:  

A .  f = r  

t ( 211 - fo) = 2 t (a) - to 

Reference : Battin, Richard H. , Astronautical Guidance, 
McGraw-Hill, New York, 1964 p. 15-21. 



APPENDIX B 

COORDINATE  TRANSFORMATION 

The  results of Appendix A a r e   i n  a fixed  rectangular  coordinate  system. 

The  equations of motion  are   in  a constantly  rotating  spherical  coordinate 

system.  This  appendix  will  establish  the  transformation. 

i r .  

We have: 

x = r sin e cos 

y = r sin e sin ih 

z = r cos e 

Using  the  definitions: 

r = u  

* v  e = -  
r 

1 

Y 

and  differentiating  equations (B 1) we get: 

0 

S; = (u sin e + v cos e) cos 9 - r 6  sin e sin 

0 

y = (u  sin e t  v cos e) sin t r@ sin e cos 

z = u cos e - v sin e 
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Inverting (B 1) and (B3) we have: 

e = COS 
- 1  z 

r 
- 

6 = tan-' Y 
X 

u =  & t yp +- zh 
r 

v =  uz - r; 

Note also:  

x + y  + 1 2  = u 2 + v  + r a  sin e . 2   - 2  2 2 . 2  2 

where C I D  C2' CgD and C are functions of f and  the initial  conditions. 4 



Using (B 11) and (B4) we  have: 

or 

o r  

r = 7 /  (Clro + c2u0)  2 t c~~ [ vo2 + ro 2 6  2 sin 

Using (B5) and (BI I )  we have : 

- 1  c lzo  + c2.zo e = C O S  r 

(clr + c u ) cos eo - c2v0  sin e - 1  0 2 0  0 e = C O S  
r 
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UsCng (B6) and (B  11) we have:  

I 1  c1yo + c290 = tan -- - 
C1” + c p o  

0 

= tan -1 

= tan - 1  

c2i0 ro s i n  t3 
0 

tan %o + - 1  ( C I f o  t Czuo) s in  e t C z v 0  c o s $  
= tan - -._._ ~ _______ O ”.” ”I 

C CP r s i n  eo 
(C . t CLuo) s i n  e + C v c o s  e 

1 - t an  a0 2 0  0 
”- 

l,ro 0 2 0  0 

C 8 r s i n  eo 
2 0  0 

9 = a0 + tan-’ (Clro + C u ) sin e + Czvocos eo 
2 0  0 
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Using  (B7), (B 1 I ) ,  and (B 12) w e  get: 

c c r + (clc4 + C2C3)rouo t c2c4 [uo 2 + vo2 t  F 2 ’ 2  + s:. 2 1 3 0  an eo] u =  0 0  

r 
(B 17) 

Using (B 8), and (B 1 I) ,  and (B 12) we  have: 

u c o  c l z  + c2g0] - r [c3z0 + c4i0] 
v =  

r sin e 

[ (Clro t c u u - (C3ro t c 4 u  r] cos eo - v s i n e  2 0  0 0 0 [‘zU - ‘4’1 v =  
r sin e (B 18) 

Using (B 9), (B 1 I ) ,  and (B 12) we  have: 

(ClC4 - C2C3) Gore sin eo - L L  

i h =  - - 
r sin 8 L L  
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Using  equations  in  Appendix A, the  trajectory is  now determined 

in t e r m s  of the  initial  state.  For  elliptical  trajectories,  let  the  sub- 

script  1 denote  the  initial  point, f = f l  , subscript 2 , the  top of the 

path, f = P and  subscript 3 , the  re-entry  point, f = 2 n  - f l  . If the 

following order  of computation is set  up,  the  critical  points of the  tra- 

jectory  may be found.  All  the  equations  necessary  will  be  summarized 

here  and  the  transformation  from Cp and % to 9 and w will be included. 

From  equations  (Al9)  and (A20) together  with  the  following  definition of 

E ,  we  have : 

2 2 2 'pe E = U  t v1 t (wl t n r l  sin el)  - - e r l  

h = r: [vl  t (wl t ae r l  sin 
2 2 

... 
e = & t q  2 

pe 

The t e r m s  C1 (f) ,  . . . C4 ( f )  a r e  defined  in  equations  (B11)  and 

(B12).  For f = IT , equations  (A21)  and  (A22)  show  these t e r m s  to be: 

c4 (n) =e(, e - h2 pe ) 
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Using  these  last  seven  equations,  we  can now compute  the  state 

at  the  top of the  path.  Equation (AL2) shows for f = TT: 

An equivalent  expression  for  this  comes  from  equation  (B14) 

“-..,..-I.” 

-pe -E+ h2 E 
r 2  = E 

Equation  (B  15)  yields : 

u r v  

% =  ) C O S  el - sin el 
pe e 

And 
. - . .- 

sin e, d = J 1  - cos  e 2 

since 0 < 9 < IT . - 2- 

F r o m  equation  (B16). we have: 

h2 ( 1 - - ) sin el t v1 cos el 
‘1 pe 

At  the  top: 

u 2  - - 0  
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Equation (B 18) give B : 

Equation (Bl9) together  with  the  information  in  Figure 1 and 

equation  (BZ),  yield : 

r1 sin el 2 r: sin el - r: sin e 2 
- 2 

w2 - 1 5 + 'e r,2 s ine2  

Equation (A26) yields : 

h2 u1 rl 
T2 = T1 + 2 

P e 2 W  e 1 

The t e r m s  C (f), . . . C4  (f),  defined  by  equations (Bl l )   and  

(BlZ), a r e  shown to be  by equations (A23) and  (A24),  for f = 2 a  -f : 

c1 (2a-f1) = 1 - 

c2 (2*-f1) = 'T ( r p e  - h  1 

c3 (2a -fl) = -2 ( - + r) 

2 
Ere e 

u1 

Ere e 

2 u 1  E 1 

2 

e Pe 1 
2 

u1 r l  c4 (2a -fl) = 1 - -7 
Pe e 
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Using  these  values  for  the CIS, we  can  compute  the  state  at 

the  re-entry  point  from  equations  (B14)  through  (B19).  Thus: 

r 3  = I1 

e3 = COS -1 [ ( 1 - 2 "2 , ,2h2)  cos el 
e pe 

2 r  u v 1 1 1  

for O<e3 < t~ 
" 

u 3  = - u 1  

sin el 
w 3  = w1 - 

2 2 sin el - sin e3 
sin 8 + Q 2 - 1  3 sin e3 

F r o m  equation  (A27).  the  re-entry  time is 

T3 = 2 Tz - T1 
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APPENDIX C 

AD JOINT  EQUATIONS 

If the  differential  equations of motion  can  be  integrated 
analytically  from  to  to  tf,  then  the  adjoint  equations  can also be 
integrated  analytically  from tf  to  to. The  proof  follows: 

Given: 1. n state  variables 

XIS x2D . xn 

2 .  n values of state  variables  at  t 
0 

XI' x2s . . . . . xn 
0 0  0 

3. n differential  equations 

5. n adjoint  variables 

6 .  n values of adjoint  variables  at t f 

7 .  n  adjoint  differential  equations 
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To find: 1. n  values of adjoint  variables  at   t  
0.  

A Y B  D A o  n 

Since,  by (C3):  

;c = f .  ( X I S  x z s  . . . 
j J  B Xn) j = L . .  . n 

and: 

Consider: 

, n  n 

Using (C9) and (C7) we  have: 

n 

= o  

Thus: 

h m h m  = constant 
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And: 

But by (C4) 

n 

Combining (C12) and (C 13) we have: 

i= 1 
m = l  

And: 

But &: a r e  all independent, so : 
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